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Abstract

Closed form expressions for the maximum likelihood estimates (MLE) of the parameters
in a multivariate normal distribution in which the variances are homogeneous and the corre-
lations are equal is well-known. However, when the correlations are equal but the variances
are not homogeneous, no closed-form expressions are available. We provide two iterative
procedures that converge rapidly. One procedure uses an extension of a well-known scaling

method, which is itself of intrinsic interest.
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1. Introduction

With the underlying assumption of a multivariate normal distribution, the intraclass covari-
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ance matrix ¥ = (0y;), with homogeneous variances o}, =
correlations p;; = p has been used to model phenomena that are permutation invariant, as
for example, in the case of p equivalent psychological tests. It was first studied by Wilks
(1946) and extended by Votaw (1948) to a more general model in which there is permuta-
tion invariance within blocks. Other multivariate extensions of the intraclass model have
been considered by Olkin (1974), and estimates of the parameters by methods other than
maximum likelihood estimates (MLE) have been obtained (see for example, Rothblum and
Schneider (1989)).

In some applications the variances may differ, yet the correlations remain homogeneous.
This modification has a profound effect on the maximization procedures. Whereas for a
normal sample the MLE of 02 and p in the intraclass model are expressible in closed form,
this is no longer the case when the variances are unequal. This paper provides an examination
of two new numerical procedures for obtaining maximum likelihood estimates in the unequal
variance case. One of the procedures requires an extension of a scaling theorem that has

some intrinsic interest.

To set forth our notation, let the n rows of

T11 - T1p

Tp1r -+ Tnp



denote independent observations from a p-dimensional random variable having a normal
distribution with mean vector zero and covariance matrix 3. Then S = (X X') is the cross-

product matrix having a Wishart distribution W(3; p, n) with density function
1
(1.1) F(S) = colS 2| S| P D2 exp {—5 or 521} . S>0,5>0,

where ¢g is a normalizing constant, and A > 0 means that the matrix A is positive definite.

When ¥ is the intraclass covariance matrix

1 p ... p
p 1 SRR
(1.2) Yy=0'P=0o| , —1/p—1)<p<1l,0>0,
Lo )
oo o 1]

the MLE of 02 and p are well-known (Wilks, 1946):

tr V eVe — tr'V
1.3 52 = Hp—= ———————
(1.3) o PR Al ey sy o

where e = (1,...,1),V = S/n.

When the variances are unequal, we denote the covariance matrix by
(1.4) Yrv =D,PD,, D,=diag(oy,...,0p),

where the designation IV refers to an intraclass correlation matrix coupled with unequal
variances. Because ¥ ! occurs in (1.1), we let D' = D, = diag(r,...,7,). Denote the

Hadamard or Schur product by A o B = (a;;b;;).

2. An iterative ML Method

To motivate the iterative procedure, rewrite (1.1) when ¥ = X,y given by (1.4):

(2.1) £(5) = ol AT DIPI 2 exp 1 [ 0 SD,P7'D.]
i=1
where ¢(S) = ¢o|S|"P~1/2, Let Q = (V o P~'). Then (2.1) can be rewritten as
1 1P 1 ,
(2.2) FOT = [e(S)]* (L) P exp =2 (1),

=1



where 7 = (11,...,7).

To obtain the MLE of ¥y, we need to resolve the maximization problem

(2.3 max ([T ) P /2 exp — L (202,

P, I i=1
noting that () is a function of p. Our procedure is to first maximize with respect to 7 using
a fixed p, then maximize with respect to p using a fixed 7, and iterate. Maximizing (2.3)

with respect to 7 (7; > 0,4 =1,...,p) is equivalent to maximizing

P 1
(2.4) Zlogn — 52@@', T >0,
i=1

which is a strictly concave function of 7. The first derivative equation is

(2.5) (li> —(r,. 1) O,

T Tp
which can be written as eD' = eD,Q, or as e = eD,QD,.

This problem can also be posed as maximizing a convex function subject to a constraint:
max x @ 2" subject to [[z; =1,2; >0,

or more conveniently, subject to Y logxz; =0, z; > 0.

The solution to (2.5) is the solution to a particular scaling result of Sinkhorn(1964),
namely, given a positive definite matrix (), there exists a diagonal matrix D, with positive
diagonal elements such that D,Q D, is doubly stochastic. This problem has a considerable
history, see for example, Marshall and Olkin (1968). In particular, there are numerical
procedures for solving (2.5) or for finding the maximum in (2.4).

Thus, given p, which means that () is given, we can determine the maximizing vector 7.

Now consider the density (2.1) in terms of p. Note that

(2.6) Pl =al +bee!, a=1/(1-p), b=—p/[(1-p)(1+(p—1)p).
Furthermore, a +pb=[1 + (p — 1)p] ', and |P|"* = a?'(a + pb). In (2.1) let U = D,V D,,
so that the maximization with respect to p becomes

1
max |P|~1/? exp—§( tr UP™!) =

1
(2.7) max (@~ (a + pb)]"/? exp —§(u1(a +b) + usb),



where uy = 3" i, us = 34 uij. Taking logarithms in (2.7), the first derivative equation

becomes
p—1 p—1 da  0b 0b
2.8 - —uy (== + —) — up— = 0,
(28) l—p 1+(-1p ul(ap 3p) a0
where
da _ 1 o —(1+(p—1)p°
Op (L—=p?"  9p (1-p?[l+(p—1p*

Equation (2.8) is a cubic equation, which can readily be solved numerically to obtain the
maximizer.
Thus, we have that given p we can solve for 7 and vice versa. This suggests the following

algorithm:
Algorithm 1.

Step 0. Choose an admissible p°. For example, choose p° to be the solution

under the intraclass covariance model.

Step 1. Use (2.5) with p° to obtain 7. Note that @ = (g;;), where ¢; =
vii(a +b),qij = vij,1 # j, and a and b are defined in terms of p° in

(2.6).

Step 2. Using the updated 7! and (2.8) find p'. Note that u; and uy are

defined in terms of 79.

Step 3. Iterate until the process converges.

In this process, each iteration consists of the solution of a Sinkhorn scaling problem (in

Step 1) and the computation of the roots of a cubic equation (in Step 2).

3. An Alternative Iterative ML Method

By a reparameterization we can take advantage of the fact that the MLE for the intraclass
covariance model can be obtained explicitly. We first review the ingredients needed later.
Rewrite the model (1.4) as

(3.1) Yiv =DyPD, = D,XD,,



p

where D, = diag(1,ns,---,1n,) = diag(1, 2, U—l) and X7 = o?P. For simplicity we write
o? for o?.

Recall that the characteristic roots of ¥; are o = 0?[1 + (p — 1)p|] and 8 = o%(1 — p) of
multiplicity p — 1. Consequently,

32) il = () a7 .
Then (2.2) becomes
33) L = )] ([T (@8 exp—L (1 VD; 57 D))

2

Further, any orthogonal matrix G with first row e/,/p diagonalizes ¥;, that is, for any such
orthogonal G, GX;G" = D = diag(a, B, .., 3). Consequently, with W = D, 'V D,

(3.4) tr W7l = tr (GWGE)(GES'G)

— trWD'= @ + Zgwii
a B 7

where W = GWG'. Thus, under the intraclass correlation model, a direct computation

using the result (1.3) yields the MLE:

eWe' - ptriV —eWe'
3.5 a=6l+(p-1)p=LE  f=621-p) = ,
(5.5) 1+ (-1l = 2 (1) =
from which
(36) o a+(p—-1)8 _trW
p p
a—p3 eWe' —trW

>

a+(p-13 (p—1)W’

We can now make use of (3.5) in the more general model. From (1.1) using (3.1) and (3.2):
» —1/2 1
N = ety (A1) | e [-guvDy GG @6y

» —1/2
(3.7) = ¢(9)Y" l(H n?) aﬁpll exp [—%tT(GDanDan')DI} :
P



where D = diag(a,3,...,0). For fixed n, let W = GD;'VD;'G" in which case (3.7)

becomes
p

—1/2
1 =) [T | exp—j(w WD,

2
so that & and § are given by (3.5). Recall that

tr D,'VD,'H = (Ly) T (Ly), v=(v...,0),

where v; = 1/nm;, i = 2,...,p, and T = V o H. Consequently, for fixed o and 3, and

H = G'D'G we need to maximize

p
1
(3.8) > logri — S (Ly)T(1,p)"
2

If we partition the matrix 7" such that

where ¢t = (t12,...,t1,), then (3.8) becomes
p 1 , ~
(3.9) > logy; — 5(7511 + 2t + UTV').
2
The first derivative equation of (3.9) is

1 1 -
(3.10) <——> = ¢ 4T

When t = 0, (3.10) reduces to (2.5), which is the Sinkhorn problem. The essence of the
maximization has not changed in that (z +a) @ (z + a)’ is a convex function of z. Thus we

need to determine
max (z +a) @ (z+ a)’, a an arbitrary vector,
x

subject to [Tx; = 1,2; > 0, or to > logx; = 0,z; > 0 which is a convex constraint. This

leads to an alternative algorithm:

Algorithm 2.



Step 0. Choose admissible initial values o and 3°, for example, o = 3° = 1.
Step 1. Solve for 1° by either (3.9) or (3.10).
Step 2. Using ° and (3.5) compute a new o' and §'.

Step 3. Iterate until the process converges.

4. Numerical Results

To test out the new algorithms we ran several numerical experiments on some model prob-
lems. All computer runs were made on an SGI Indigo workstation in double precision
arithmetic. As a benchmark, we used the nonlinear optimization package NPSOL developed
by Gill, Murray, Saunders, and Wright (1986).

We were particularly interested in the effects of the dimension of the problem and the
value of the correlation coefficient. We constructed a model problem by computing a cross
product matrix from a set of random variables generated from a normal distribution with

mean zero and a p X p covariance matrix given by
Yiv =D,PD,, D,=diag(oy,...,0,), P =(1—p)l+ pee,

where D, = diag(+/0.7,/1.5,v/2.0,v/2.3,/3.0,4/0.7,...,4/3.0), and p = 0.6,0.9. For each
value of p, we ran four test problems with p = 5,20,50,100. The number of observations, n,
was set equal to 10p.

For the method NPSOL, the convergence tolerance was set to 10712, which according to
the user’s guide is a rough approximation to the number of correct figures desired in the
objective function at the solution. For the new algorithms, the methods were terminated if

any of the following three conditions were met:

(4.1) gkl < 107°(1 + | i),
(4.2) lzes — @l < 1077 agal],

(4.3) [ fesr — fell < 107°(1+ | fera]),

N



where f; and g, are the function and gradient values respectively at the k-th iteration.

Condition (4.1) is the most satisfactory termination criteria in that the gradient will
be approximately zero. The other two conditions are necessary to keep the algorithms
from taking too many iterations in regions where insufficient progress is being made. The
tolerances were chosen to correspond approximately with those used by NPSOL.

The results from using NPSOL on the test problems are displayed in Table 4.1. The table
contains the value of the likelihood function and the norm of the gradient at the solution in
columns 3-4. In addition, the number of iterations, the total number of function evaluations
and the total cpu time taken are shown as a way of comparing the relative efficiency of the
various algorithms. Tables 4.2-4.3 contain the numerical results from algorithms 1 and 2

respectively.

Table 4.1: NPSOL

p P f(z*)  |lg(z*)]| Iter(Feval) Cpu time

5 0.6 2760 7.2810°7  11(19) 0.05
20 0.6 7.904 3.37107°  23(49) 0.19
50 0.6 17.439 4.5610°°  25(53) 0.82
100 0.6 33.322 4.4910°%  28(58) 3.34
5 09 0139 1.9910°7  17(36) 0.05
20 0.9 -5.084 9.041077  32(74) 0.26
50 0.9 -16.322 1.0110™°  38(84) 1.31
100 0.9 -35.111 3.2710°°  45(103) 5.84

Our first observation is that all of the methods return the same likelihood value in every
test case. We also note that in most cases, both of the new algorithms yield a solution with
fewer function evaluations (as well as faster execution times) than NPSOL. Algorithm 1 also

gives solutions that have roughly the same amount of accuracy as the solutions returned



Table 4.2: Algorithm 1

p P f gl Iter(Feval) Cpu time
5 0.6 2760 1.9610°°  8(24) 0.11
20 0.6 7.904 29110° 8(31) 0.23
50 0.6 17.439 5.3410°° 8(31) 0.76
100 0.6 33.322 5.68107° 8(29) 2.29
5 09 0139 6.2010°%  11(43) 0.15
20 0.9 -5.084 1.89107°  11(44) 0.29
50 0.9 -16.322 1.6510°° 10(39) 0.97
100 0.9 -35.111 2.62 1075 10(39) 2.48

Table 4.3: Algorithm 2
p P f gl Iter(Feval) Cpu time

5 0.6 2760 8.04107° 9(26) 0.10
20 0.6 7.904 9.95107* 8 0.24
50 0.6 17.439 3.86 1073 8 0.95

5 0.9 0139 560101 7 0.11
20 0.9 -5.084 1.091073 9 0.22
50 0.9 -16.322 1.04 103 11(45) 1.15

100 0.9 -35.111 1.1710°3 11(41) 4.18

(
(32)
(32)
100 0.6 33.322 2121073 8(29) 3.09
(30)
(27)



from NPSOL as measured by the norm of the gradients. The second algorithm is as efficient
as the first algorithm but always returned a solution with a larger gradient.

An interesting point is that the dimension of the problem did not affect the convergence
of either of the new algorithms. In all cases, the number of iterations was between 8-
11 iterations. In contrast, the number of iterations required by NPSOL grows with the
dimension of the problem. The number of iterations required by NPSOL also increased as
the value of the correlation coefficient was increased. In the largest dimensional problem the
number of function evaluations required almost doubled. The two new algorithms were not
substantially affected by the larger correlation coefficient.

A final point concerns the choice of the initial guess for the two new algorithms. Although
there are clear choices in each case (for example the solution under the intraclass covariance
model for Algorithm 1), we also tested the algorithms over a wide range of initial guesses. In
particular, for Algorithm 1 we also conducted tests using an initial guess for p close to both
—1/(p — 1) and 1, which constitutes the extreme values for this parameter. For Algorithm
2, the extreme case consists of choosing & = # = 0. In all the numerical tests using these
initial guesses both algorithms converged. Interestingly enough, in some cases the algorithms
converged in a fewer number of iterations than the cases displayed in Tables 4.1-4.2, although
on the average the use of extreme values for the initial guess caused both algorithms to take

a larger number of iterations.

5. Conclusions

We have presented two new algorithms for the computation of maximum likelihood estima-
tors in the case of multivariate normal distributions where the correlations are equal but
the variances are not homogeneous. The first algorithm involves the solution of a Sinkhorn
scaling problem in conjunction with the solution of a cubic equation. The second algorithm
only requires the solution of an extended Sinkhorn problem which is of intrinsic interest.
Both new algorithms compare favorably with standard nonlinear programming techniques.

In addition, the new algorithms have the advantage of being fairly insensitive to the dimen-



sion of the problem and to the correlation coefficient. These two characteristics make the

new algorithms more attractive for large dimensional problems.
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